

CSC 158

PROJECT 2 – Training a Neural
Network to Predict Stock Prices

Youssef Elmougy

PROBLEM DESCRIPTION

There exists several API’s, such as the Google Finance API, providing real-time stock charts and
stock prices. The idea of accurately extracting the minutely stock data from these API’s and
developing a deep learning model aimed at training and testing the data and hence withhold
the ability to predict real-time stock prices, of course to a certain percentage of accuracy, is
inevitable.

This project exploits a huge dataset containing stock prices for the S&P 500 Index and its
constituents from April 2017 to August 2017 to precisely predict the next minute stock price of
the S&P 500 Index. As the neural network is training and testing, a graph of the actual stock
price and the predicted stock price will be plotted, moreover the error and accuracy will be
calculated and displayed.

DATA DESCRIPTION

The dataset is stored in the file ‘data_stocks.csv’. This dataset contains 41,266 minutes of data
ranging from April 2017 to August 2017 on the prices of the 500 stock constituents along with
the total S&P 500 index price. The following shows the description of the data:

 Fig. 1: print(dataset.describe())

The date/time column in the dataset has been dropped as it serves no firm purpose because
the implementation instead is greatly fixated on the numerical values of the stocks.

This project focuses on predicting the next minute stock price for the S&P 500, so each row of
the dataset contains the constituent 500 stock’s prices at T = t and the stock price of S&P 500 at
T = t + 1.

METHOD DESCRIPTION

This deep learning model is built with TensorFlow. This provides much more flexibility and the
ability to use a wider range of building blocks and concepts. The dataset is split in the following
manner: 80% as the training data, and 20% as the testing data. Both the training and testing
data is scaled using sklearn’s MinMaxScaler() and bounded within the feature range [-1,1].

The TensorFlow model consists of four layers. The number of neurons in each layer is
experimentally changed to test for the configuration with the best output. Although it follows a
common sequence, the subsequent layer’s number of neurons is always half the number of
neurons of the previous layer. This idea of decreasing number of neurons is because each
subsequent layer compresses the information that is provided to it and therefore produces a
more accurate result.

The model’s abstract representation of neural network is through placeholders and variables.
They are explained below:

• placeholders – two placeholders are utilized, ins: which comprises the NN’s inputs which
is the stock prices of the 500 constituents, and outs: which comprises the NN’s outputs
which is the stock price of the S&P 500.

• variables – each of the four layers as well as the output layer has its unique weight and
bias variable. The weight variables are implemented in a way that allows for each layer

ins
network
inputs

Activation
Function

outs
network
outputs

to pass its outputs as the input of the next layer. The bias variables are implemented as
the number of neurons in the layer.

The placeholders and variables are then combined to design the architecture of the neural
network. An activation function is then implemented, this activation function is experimentally
changed to test for the finest accuracy.

Finally, the neural network is fitted and trained. The network is trained using batches which
change in number for each epoch run on the data. The error is calculated using the Mean
Squared Error (MSE) approach, and an optimizer is used to minimize the MSE. The predictions
of the neural network are plotted on a graph along with the actual data line.

IMPLEMENTATION

The following shows the code of the algorithm and a description for its implementation:

Importing the data

 The dataset is read from the file and the date/time column is dropped.

 Splitting the dataset into training data and testing data

As mentioned earlier, the dataset is split as 80% for the training data and
stored in the variable traindata and the rest is set for the testing data
stored in the variable testdata.

 Scaling the dataset

The MinMaxScaler() is implemented with the feature_range=(-1,1) which
bounds the data within those values. The data is then fitted, and the
training and testing variables are transformed to the scaled values.

 Defining the placeholders

As mentioned before, the placeholder’s ins and outs store the data that is
inputted and outputted in the network. The input is in the form of a 2-
dimentional matrix, and the output is a 1-dimentional vector. ‘None’ is
used to give freedom to change the variable later on in the program.

 Defining the variables

The number of neurons in each layer is defined as variables to provide easy
access to changes to find the best architecture combinations. Furthermore, the
weight and bias for each layer is defined. The weight for each layer is defined as
a two-dimensional matrix and the bias for each layer is defined as a one-
dimensional vector.

Defining the activation function

This is where the activation function is defined. In this case, the layers of the
network are transformed by the ReLU function (Rectified Linear Unit).

 Defining error analysis function and optimizer function

The error analysis function is used to measure the deviation between the real values
and the predicted values. MSE is commonly used. The optimizer is
used to adapt the network’s weight and bias variables during training. The optimizer
being used is Adaptive Moment Estimation is the default.

 Fitting the network and training

During this training, random test samples are created and used for the
X_train and y_train. These batches are fed into the network through
the ins placeholder. This batch flows through to the output layer where
the predictions are compared with the values in the outs placeholder.
The data is then optimized, and the weights and biases are then updated.
This cycle is repeated for the next batches until all batches are processed.
When all batches are processed, that is one epoch. For every 5th batch the
network is visualized.

RESULTS

The following displays results for the algorithm run with different activation functions:

layer1_neurons = 1000 # double input size
layer2_neurons = 500 # 50% of previous layer
layer3_neurons = 250 # 50% of previous layer
layer4_neurons = 125 # 50% of previous layer

ACTIVATION FUNCTION: ReLU

layer1_neurons = 2000 # double input size
layer2_neurons = 1000 # 50% of previous layer
layer3_neurons = 500 # 50% of previous layer
layer4_neurons = 250 # 50% of previous layer

ACTIVATION FUNCTION: ReLU

layer1_neurons = 500 # double input size
layer2_neurons = 250 # 50% of previous layer
layer3_neurons = 125 # 50% of previous layer
layer4_neurons = 100

ACTIVATION FUNCTION: ReLU

layer1_neurons = 1000 # double input size
layer2_neurons = 500 # 50% of previous layer
layer3_neurons = 250 # 50% of previous layer
layer4_neurons = 125 # 50% of previous layer

ACTIVATION FUNCTION: sigmoid

layer1_neurons = 2000 # double input size
layer2_neurons = 1000 # 50% of previous layer
layer3_neurons = 500 # 50% of previous layer
layer4_neurons = 250 # 50% of previous layer

ACTIVATION FUNCTION: sigmoid

layer1_neurons = 500 # double input size
layer2_neurons = 250 # 50% of previous layer
layer3_neurons = 125 # 50% of previous layer
layer4_neurons = 100

ACTIVATION FUNCTION: sigmoid

CONCLUSION

Looking at the results above, decreasing the number of neurons in each layer does not
necessarily increase the accuracy on test data. It is clear that the least effective activation
function was the sigmoid function. tanh was an average activation function but ReLU produced
the best accuracy results.

The combination of an activation function and number of neurons for each layer that yields the
best accuracy results is the following:

Activation Function: ReLU
layer1_neurons = 2000, layer2_neurons = 1000, layer3_neurons = 500, layer4_neurons = 250
Accuracy on Test Data: 0.9979908966924995
(the progress of the plot of actual and predicted lines as the NN trains and tests is shown in the PowerPoint presentation)

The NN quickly adapts to the line of the actual stock prices and continues to find and learn finer
patterns of the data. The optimizer works to reduce the learning rate as the model trains so
that it can accurately reach the maximum accuracy without a chance of overshooting. Following
the 10 epochs, the data is pretty much close to a perfect fit. The final MSE is 0.0020091033
which is extremely low.

layer1_neurons = 1000 # double input size
layer2_neurons = 500 # 50% of previous layer
layer3_neurons = 250 # 50% of previous layer
layer4_neurons = 125 # 50% of previous layer

ACTIVATION FUNCTION: tanh

layer1_neurons = 2000 # double input size
layer2_neurons = 1000 # 50% of previous layer
layer3_neurons = 500 # 50% of previous layer
layer4_neurons = 250 # 50% of previous layer

ACTIVATION FUNCTION: tanh

layer1_neurons = 500 # double input size
layer2_neurons = 250 # 50% of previous layer
layer3_neurons = 125 # 50% of previous layer
layer4_neurons = 100

ACTIVATION FUNCTION: tanh

FULL CODE

1. #Stock_Prediction
2.
3. #IMPORT
4. import numpy as np
5. import pandas as pd
6. import tensorflow as tf
7. import matplotlib.pyplot as plt
8. from sklearn.preprocessing import MinMaxScaler
9.
10.
11. #IMPORT THE DATA FILE, REMOVE THE 'DATE' COLUMN FROM DATASET
12. dataset = pd.read_csv('data_stocks.csv')
13. dataset = dataset.drop(['DATE'], 1)
14.
15. #DATASET VARIABLES, 'num_data' = NUMBER OF DATA POINTS, 'num_const' = NUMBER OF STOCKS

16. num_data = dataset.shape[0]
17. num_const = dataset.shape[1]
18.
19. #MAKE DATASET np.array
20. dataset = dataset.values
21.
22. #SPLIT DATASET INTO 80% FOR TRAINING DATA AND 20% FOR TESTING DATA
23. #TRAINING DATA, 80%
24. traindata = dataset[np.arange(0, int(np.floor(0.8*num_data))), :]
25. #TESTING DATA, 20%
26. testdata = dataset[np.arange(int(np.floor(0.8*num_data))+1, num_data), :]
27.
28. #SCALE DATASET USING MinMaxScaler WITH VALUES BEING IN THE RANGE OF (-1,1)
29. scaler = MinMaxScaler(feature_range=(-1, 1))
30. scaler.fit(traindata)
31.
32. #SCALE BOTH THE TRAINING AND THE TESTING DATASET
33. traindata = scaler.transform(traindata)
34. testdata = scaler.transform(testdata)
35.
36. #SPLIT DATASET INTO X AND y TRAIN AND TEST
37. # X_train, X_test, etc = are arrays
38. X_train = traindata[:, 1:]
39. X_test = testdata[:, 1:]
40. y_train = traindata[:, 0]
41. y_test = testdata[:, 0]
42.
43. #RETREIVING NUMBER OF STOCKS IN SPLIT TRAINING DATASET
44. num_stocks = X_train.shape[1]
45.
46. #SETTING UP TensorFlow MODEL, ABSTRACT REPRESENTATION OF NN THROUGH placeholders AND va

riables
47. # placeholders, 'ins' = inputs (stock prices of all S&P 500 stocks), 'outs' = outputs

 (stock price of the S&P 500)
48. # variables, layeri_neurons = number of neurons on layer i, layeri_weight = weight fo

r layer i, layeri_bias = bias for layer i
49.
50. # layeri_neurons, -----TRY OUT DIFFERENT NUMBER OF NEURONS-----
51. layer1_neurons = 2000 # double input size
52. layer2_neurons = 1000 # 50% of previous layer

53. layer3_neurons = 500 # 50% of previous layer
54. layer4_neurons = 250 # 50% of previous layer
55.
56. session = tf.InteractiveSession()
57.
58. # placeholders
59. ins = tf.placeholder(dtype=tf.float32, shape=[None, num_stocks])
60. outs = tf.placeholder(dtype=tf.float32, shape=[None])
61. ### WEIGHT AND BIAS INITIALIZERS using default initialization strategy ###
62. weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="unif

orm", scale=1)
63. bias_initializer = tf.zeros_initializer()
64. ############################
65. # layeri_weight, layeri_bias
66. layer1_weight = tf.Variable(weight_initializer([num_stocks, layer1_neurons]))
67. layer1_bias = tf.Variable(bias_initializer([layer1_neurons]))
68. layer2_weight = tf.Variable(weight_initializer([layer1_neurons, layer2_neurons]))
69. layer2_bias = tf.Variable(bias_initializer([layer2_neurons]))
70. layer3_weight = tf.Variable(weight_initializer([layer2_neurons, layer3_neurons]))
71. layer3_bias = tf.Variable(bias_initializer([layer3_neurons]))
72. layer4_weight = tf.Variable(weight_initializer([layer3_neurons, layer4_neurons]))
73. layer4_bias = tf.Variable(bias_initializer([layer4_neurons]))
74. output_weight = tf.Variable(weight_initializer([layer4_neurons, 1]))
75. output_bias = tf.Variable(bias_initializer([1]))
76. #NN ARCHITECTURE AND ACTIVATION FUNCTION (ReLU) -----

TRY OUT DIFFERENT ACTIVATION FUNCTIONS-----
77. layer1 = tf.nn.relu(tf.add(tf.matmul(ins, layer1_weight), layer1_bias))
78. layer2 = tf.nn.relu(tf.add(tf.matmul(layer1, layer2_weight), layer2_bias))
79. layer3 = tf.nn.relu(tf.add(tf.matmul(layer2, layer3_weight), layer3_bias))
80. layer4 = tf.nn.relu(tf.add(tf.matmul(layer3, layer4_weight), layer4_bias))
81. layer_output = tf.transpose(tf.add(tf.matmul(layer4, output_weight), output_bias))
82.
83. #ERROR ANALYSIS FUNCTION, Measure of deviation of predictions and actual using Mean Squ

ared Error
84. MSE = tf.reduce_mean(tf.squared_difference(layer_output, outs))
85. #OPTIMISER RATE TO DECREASE THE MSE, using Adaptive Moment Estimation Optimizer (defaul

t for deep learning dev)
86. MSE_dec = tf.train.AdamOptimizer().minimize(MSE)
87.
88. #SETTING UP NN SESSION AND PLOT
89. session.run(tf.initializers.global_variables()) #initialise global variables in plot
90. plt.ion() #turning on interactive mode
91. graph = plt.figure() #create new plot
92. grid_param = graph.add_subplot(111) #subplot grid parameter
93. real_line, = grid_param.plot(y_test)
94. pred_line, = grid_param.plot(y_test * 0.5)
95. plt.show()
96.
97.
98. #num_in_batch = 256
99.
100.
101. #TRAINING WITH DIFFERENT SIZED BATCHES FOR EACH EPOCH
102. for epoch in range(10):
103. #GENERATE SHUFFLED TRAINING DATA
104. size = len(y_train)
105. batch_range = size //256
106. random = np.random.permutation(np.arange(size))
107. X_train = X_train[random]
108. y_train = y_train[random]
109. for x in range(0, batch_range):

110. #TRAIN AND RUN THE BATCH AND MINIMIZE MSE
111. X_batch = X_train[(256*x):((256*x)+256)]
112. Y_batch = y_train[(256*x):((256*x)+256)]
113. session.run(MSE_dec, feed_dict={ins:X_batch, outs:Y_batch})
114.
115. #DISPLAY PLOT EVERY 50th BATCH
116. if(np.mod(x, 50) == 0):
117. #RUN A PREDICTION ON THE DATA
118. prediction = session.run(layer_output, feed_dict={ins: X_test})
119. pred_line.set_ydata(prediction)
120. plt.pause(0.01)
121.
122.
123. #DISPLAY MSE AND TEST SCORE ACCURACY FOR TEST DATA
124. MSE_test = session.run(MSE, feed_dict={ins:X_test, outs: y_test})
125. print("---")
126. print("\tMSE for test data: ", MSE_test)
127. print("\tAccuracy on test data: ", 1-MSE_test)

