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PROBLEM DESCRIPTION 

There exists several API’s, such as the Google Finance API, providing real-time stock charts and 
stock prices. The idea of accurately extracting the minutely stock data from these API’s and 
developing a deep learning model aimed at training and testing the data and hence withhold 
the ability to predict real-time stock prices, of course to a certain percentage of accuracy, is 
inevitable. 
 
This project exploits a huge dataset containing stock prices for the S&P 500 Index and its 
constituents from April 2017 to August 2017 to precisely predict the next minute stock price of 
the S&P 500 Index. As the neural network is training and testing, a graph of the actual stock 
price and the predicted stock price will be plotted, moreover the error and accuracy will be 
calculated and displayed. 

DATA DESCRIPTION 

The dataset is stored in the file ‘data_stocks.csv’. This dataset contains 41,266 minutes of data 
ranging from April 2017 to August 2017 on the prices of the 500 stock constituents along with 
the total S&P 500 index price. The following shows the description of the data: 
 

 
 Fig. 1:   print(dataset.describe()) 
 
The date/time column in the dataset has been dropped as it serves no firm purpose because 
the implementation instead is greatly fixated on the numerical values of the stocks. 
 
This project focuses on predicting the next minute stock price for the S&P 500, so each row of 
the dataset contains the constituent 500 stock’s prices at T = t and the stock price of S&P 500 at 
T = t + 1. 
 
 



METHOD DESCRIPTION 

This deep learning model is built with TensorFlow. This provides much more flexibility and the 
ability to use a wider range of building blocks and concepts. The dataset is split in the following 
manner: 80% as the training data, and 20% as the testing data. Both the training and testing 
data is scaled using sklearn’s MinMaxScaler() and bounded within the feature range [-1,1].  
 
The TensorFlow model consists of four layers. The number of neurons in each layer is 
experimentally changed to test for the configuration with the best output. Although it follows a 
common sequence, the subsequent layer’s number of neurons is always half the number of 
neurons of the previous layer. This idea of decreasing number of neurons is because each 
subsequent layer compresses the information that is provided to it and therefore produces a 
more accurate result.  

 
 
The model’s abstract representation of neural network is through placeholders and variables. 
They are explained below: 
 

• placeholders – two placeholders are utilized, ins: which comprises the NN’s inputs which 
is the stock prices of the 500 constituents, and outs: which comprises the NN’s outputs 
which is the stock price of the S&P 500. 

 
 
 
 
 
 
 

• variables – each of the four layers as well as the output layer has its unique weight and 
bias variable. The weight variables are implemented in a way that allows for each layer 
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to pass its outputs as the input of the next layer. The bias variables are implemented as 
the number of neurons in the layer. 

 
The placeholders and variables are then combined to design the architecture of the neural 
network. An activation function is then implemented, this activation function is experimentally 
changed to test for the finest accuracy. 
 
Finally, the neural network is fitted and trained. The network is trained using batches which 
change in number for each epoch run on the data. The error is calculated using the Mean 
Squared Error (MSE) approach, and an optimizer is used to minimize the MSE. The predictions 
of the neural network are plotted on a graph along with the actual data line. 

IMPLEMENTATION 

The following shows the code of the algorithm and a description for its implementation: 
 

Importing the data 

 
 
  The dataset is read from the file and the date/time column is dropped. 
 
 Splitting the dataset into training data and testing data 

 

 
 

As mentioned earlier, the dataset is split as 80% for the training data and  
stored in the variable traindata and the rest is set for the testing data  
stored in the variable testdata. 
 

 Scaling the dataset  
 

 
 



The MinMaxScaler() is implemented with the feature_range=(-1,1) which 
bounds the data within those values. The data is then fitted, and the  
training and testing variables are transformed to the scaled values. 

 
 Defining the placeholders 
 

 
 

As mentioned before, the placeholder’s ins and outs store the data that is 
inputted and outputted in the network. The input is in the form of a 2-
dimentional matrix, and the output is a 1-dimentional vector. ‘None’ is  
used to give freedom to change the variable later on in the program. 

 
 Defining the variables 

 

 
 

 
 

The number of neurons in each layer is defined as variables to provide easy 
access to changes to find the best architecture combinations. Furthermore, the 
weight and bias for each layer is defined. The weight for each layer is defined as 
a two-dimensional matrix and the bias for each layer is defined as a one-
dimensional vector. 

 
Defining the activation function 
 

 
 



This is where the activation function is defined. In this case, the layers of the 
network are transformed by the ReLU function (Rectified Linear Unit). 

 
 Defining error analysis function and optimizer function 
 

 
 

The error analysis function is used to measure the deviation between the real values 
and the predicted values. MSE is commonly used. The optimizer is 
used to adapt the network’s weight and bias variables during training. The optimizer 
being used is Adaptive Moment Estimation is the default. 

 
 Fitting the network and training 
 

 
 

During this training, random test samples are created and used for the  
X_train and y_train. These batches are fed into the network through  
the ins placeholder. This batch flows through to the output layer where  
the predictions are compared with the values in the outs placeholder.  
The data is then optimized, and the weights and biases are then updated.  
This cycle is repeated for the next batches until all batches are processed.  
When all batches are processed, that is one epoch. For every 5th batch the 
network is visualized. 



RESULTS 

The following displays results for the algorithm run with different activation functions: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

layer1_neurons = 1000 # double input size 
layer2_neurons = 500  # 50% of previous layer 
layer3_neurons = 250  # 50% of previous layer 
layer4_neurons = 125  # 50% of previous layer 
 
ACTIVATION FUNCTION: ReLU 
 

 

layer1_neurons = 2000 # double input size 
layer2_neurons = 1000  # 50% of previous layer 
layer3_neurons = 500  # 50% of previous layer 
layer4_neurons = 250  # 50% of previous layer 
 
ACTIVATION FUNCTION: ReLU 

 

layer1_neurons = 500 # double input size 
layer2_neurons = 250  # 50% of previous layer 
layer3_neurons = 125  # 50% of previous layer 
layer4_neurons = 100   
 
ACTIVATION FUNCTION: ReLU 
 

 

layer1_neurons = 1000 # double input size 
layer2_neurons = 500  # 50% of previous layer 
layer3_neurons = 250  # 50% of previous layer 
layer4_neurons = 125  # 50% of previous layer 
 
ACTIVATION FUNCTION: sigmoid 

 

layer1_neurons = 2000 # double input size 
layer2_neurons = 1000  # 50% of previous layer 
layer3_neurons = 500  # 50% of previous layer 
layer4_neurons = 250  # 50% of previous layer 
 
ACTIVATION FUNCTION: sigmoid 
 

 

layer1_neurons = 500 # double input size 
layer2_neurons = 250  # 50% of previous layer 
layer3_neurons = 125  # 50% of previous layer 
layer4_neurons = 100   
 
ACTIVATION FUNCTION: sigmoid 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 

Looking at the results above, decreasing the number of neurons in each layer does not 
necessarily increase the accuracy on test data. It is clear that the least effective activation 
function was the sigmoid function. tanh was an average activation function but ReLU produced 
the best accuracy results. 
 
The combination of an activation function and number of neurons for each layer that yields the 
best accuracy results is the following: 
 
Activation Function: ReLU 
layer1_neurons = 2000, layer2_neurons = 1000, layer3_neurons = 500, layer4_neurons = 250 
Accuracy on Test Data: 0.9979908966924995 
(the progress of the plot of actual and predicted lines as the NN trains and tests is shown in the PowerPoint presentation) 

 
The NN quickly adapts to the line of the actual stock prices and continues to find and learn finer 
patterns of the data. The optimizer works to reduce the learning rate as the model trains so 
that it can accurately reach the maximum accuracy without a chance of overshooting. Following 
the 10 epochs, the data is pretty much close to a perfect fit. The final MSE is 0.0020091033 
which is extremely low. 

layer1_neurons = 1000 # double input size 
layer2_neurons = 500  # 50% of previous layer 
layer3_neurons = 250  # 50% of previous layer 
layer4_neurons = 125  # 50% of previous layer 
 
ACTIVATION FUNCTION: tanh 
 

 

layer1_neurons = 2000 # double input size 
layer2_neurons = 1000  # 50% of previous layer 
layer3_neurons = 500  # 50% of previous layer 
layer4_neurons = 250  # 50% of previous layer 
 
ACTIVATION FUNCTION: tanh 
 

 

layer1_neurons = 500 # double input size 
layer2_neurons = 250  # 50% of previous layer 
layer3_neurons = 125  # 50% of previous layer 
layer4_neurons = 100   
 
ACTIVATION FUNCTION: tanh 

 



FULL CODE  

1. #Stock_Prediction   
2.    
3. #IMPORT   
4. import numpy as np   
5. import pandas as pd   
6. import tensorflow as tf   
7. import matplotlib.pyplot as plt   
8. from sklearn.preprocessing import MinMaxScaler   
9.    
10.    
11. #IMPORT THE DATA FILE, REMOVE THE 'DATE' COLUMN FROM DATASET   
12. dataset = pd.read_csv('data_stocks.csv')   
13. dataset = dataset.drop(['DATE'], 1)   
14.    
15. #DATASET VARIABLES, 'num_data' = NUMBER OF DATA POINTS, 'num_const' = NUMBER OF STOCKS 

  
16. num_data = dataset.shape[0]   
17. num_const = dataset.shape[1]   
18.    
19. #MAKE DATASET np.array   
20. dataset = dataset.values   
21.    
22. #SPLIT DATASET INTO 80% FOR TRAINING DATA AND 20% FOR TESTING DATA   
23. #TRAINING DATA, 80%   
24. traindata = dataset[np.arange(0, int(np.floor(0.8*num_data))), :]   
25. #TESTING DATA, 20%   
26. testdata = dataset[np.arange(int(np.floor(0.8*num_data))+1, num_data), :]   
27.    
28. #SCALE DATASET USING MinMaxScaler WITH VALUES BEING IN THE RANGE OF (-1,1)   
29. scaler = MinMaxScaler(feature_range=(-1, 1))   
30. scaler.fit(traindata)   
31.    
32. #SCALE BOTH THE TRAINING AND THE TESTING DATASET   
33. traindata = scaler.transform(traindata)   
34. testdata = scaler.transform(testdata)   
35.    
36. #SPLIT DATASET INTO X AND y TRAIN AND TEST   
37. # X_train, X_test, etc = are arrays   
38. X_train = traindata[:, 1:]   
39. X_test = testdata[:, 1:]   
40. y_train = traindata[:, 0]   
41. y_test = testdata[:, 0]   
42.    
43. #RETREIVING NUMBER OF STOCKS IN SPLIT TRAINING DATASET   
44. num_stocks = X_train.shape[1]   
45.    
46. #SETTING UP TensorFlow MODEL, ABSTRACT REPRESENTATION OF NN THROUGH placeholders AND va

riables   
47. #   placeholders, 'ins' = inputs (stock prices of all S&P 500 stocks), 'outs' = outputs

 (stock price of the S&P 500)   
48. #   variables, layeri_neurons = number of neurons on layer i, layeri_weight = weight fo

r layer i, layeri_bias = bias for layer i   
49.    
50. # layeri_neurons, -----TRY OUT DIFFERENT NUMBER OF NEURONS-----   
51. layer1_neurons = 2000  # double input size   
52. layer2_neurons = 1000  # 50% of previous layer   



53. layer3_neurons = 500   # 50% of previous layer   
54. layer4_neurons = 250   # 50% of previous layer   
55.    
56. session = tf.InteractiveSession()   
57.    
58. # placeholders   
59. ins = tf.placeholder(dtype=tf.float32, shape=[None, num_stocks])   
60. outs = tf.placeholder(dtype=tf.float32, shape=[None])   
61. ### WEIGHT AND BIAS INITIALIZERS using default initialization strategy ###   
62. weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="unif

orm", scale=1)   
63. bias_initializer = tf.zeros_initializer()   
64. ############################   
65. # layeri_weight, layeri_bias   
66. layer1_weight = tf.Variable(weight_initializer([num_stocks, layer1_neurons]))   
67. layer1_bias = tf.Variable(bias_initializer([layer1_neurons]))   
68. layer2_weight = tf.Variable(weight_initializer([layer1_neurons, layer2_neurons]))   
69. layer2_bias = tf.Variable(bias_initializer([layer2_neurons]))   
70. layer3_weight = tf.Variable(weight_initializer([layer2_neurons, layer3_neurons]))   
71. layer3_bias = tf.Variable(bias_initializer([layer3_neurons]))   
72. layer4_weight = tf.Variable(weight_initializer([layer3_neurons, layer4_neurons]))   
73. layer4_bias = tf.Variable(bias_initializer([layer4_neurons]))   
74. output_weight = tf.Variable(weight_initializer([layer4_neurons, 1]))   
75. output_bias = tf.Variable(bias_initializer([1]))   
76. #NN ARCHITECTURE AND ACTIVATION FUNCTION (ReLU) -----

TRY OUT DIFFERENT ACTIVATION FUNCTIONS-----   
77. layer1 = tf.nn.relu(tf.add(tf.matmul(ins, layer1_weight), layer1_bias))   
78. layer2 = tf.nn.relu(tf.add(tf.matmul(layer1, layer2_weight), layer2_bias))   
79. layer3 = tf.nn.relu(tf.add(tf.matmul(layer2, layer3_weight), layer3_bias))   
80. layer4 = tf.nn.relu(tf.add(tf.matmul(layer3, layer4_weight), layer4_bias))   
81. layer_output = tf.transpose(tf.add(tf.matmul(layer4, output_weight), output_bias))   
82.    
83. #ERROR ANALYSIS FUNCTION, Measure of deviation of predictions and actual using Mean Squ

ared Error   
84. MSE = tf.reduce_mean(tf.squared_difference(layer_output, outs))   
85. #OPTIMISER RATE TO DECREASE THE MSE, using Adaptive Moment Estimation Optimizer (defaul

t for deep learning dev)   
86. MSE_dec = tf.train.AdamOptimizer().minimize(MSE)   
87.    
88. #SETTING UP NN SESSION AND PLOT   
89. session.run(tf.initializers.global_variables()) #initialise global variables in plot   
90. plt.ion() #turning on interactive mode   
91. graph = plt.figure() #create new plot   
92. grid_param = graph.add_subplot(111) #subplot grid parameter   
93. real_line, = grid_param.plot(y_test)   
94. pred_line, = grid_param.plot(y_test * 0.5)   
95. plt.show()   
96.    
97.    
98. #num_in_batch = 256    
99.    
100.    
101. #TRAINING WITH DIFFERENT SIZED BATCHES FOR EACH EPOCH   
102. for epoch in range(10):   
103.     #GENERATE SHUFFLED TRAINING DATA   
104.     size = len(y_train)   
105.     batch_range = size //256   
106.     random = np.random.permutation(np.arange(size))   
107.     X_train = X_train[random]   
108.     y_train = y_train[random]   
109.     for x in range(0, batch_range):   



110.         #TRAIN AND RUN THE BATCH AND MINIMIZE MSE   
111.         X_batch = X_train[(256*x):((256*x)+256)]   
112.         Y_batch = y_train[(256*x):((256*x)+256)]   
113.         session.run(MSE_dec, feed_dict={ins:X_batch, outs:Y_batch})   
114.    
115.         #DISPLAY PLOT EVERY 50th BATCH   
116.         if(np.mod(x, 50) == 0):   
117.             #RUN A PREDICTION ON THE DATA   
118.             prediction = session.run(layer_output, feed_dict={ins: X_test})   
119.             pred_line.set_ydata(prediction)   
120.             plt.pause(0.01)   
121.    
122.    
123. #DISPLAY MSE AND TEST SCORE ACCURACY FOR TEST DATA   
124. MSE_test = session.run(MSE, feed_dict={ins:X_test, outs: y_test})   
125. print("---------------------------------------------------")   
126. print("\tMSE for test data: ", MSE_test)   
127. print("\tAccuracy on test data: ", 1-MSE_test)   

 


